Installing and Using SSH on
LInux

Phil Karn
karn@ka9qg.ampr.org

Secure Shell - SSH

e Originally designed and written by Tatu
Ylonen (ylo@ssh.fi) as a secure, drop-in
replacement for the BSD UNIX
rsh/rlogin/rcp suite

* Provides automatic, strong, cryptographic
authentication and confidentiality

 Remarkably easy to install and use
— now almost universal on UNIX servers

Where to get SSH

o ftp://ftp.cs.hut.fi/pub/ssh

— two protocol versions, 1.2 and 2.0

— 2.0 has more restrictive licensing provisions

— Most people still use 1.2 - released under GPL
 http://www.cryptography.org/cgi-

bin/crypto.cgi/ssh/

— my version of 1.2.26 with fast x86 DES code

— export-controlled site (must be US citizen or
permanent resident)

Installing SSH

tar xzvf ssn-1.2.26.tar.gz
cd ssh-1.2.26
./configure
make Install
That'sit!
— you might have to edit a boot script to start sshd

Using SSH: the ssh command

 ssh [-C] remotehost command

— executes ‘command’ on host ‘remotehost’, with
standard input, output and error to the local
pipeline

— will prompt for password or passphrase unless
the authentication agent isin use

— -C option enables compression; advised on
most paths beyond afast local LAN

* Scp |
* Scp |

The scp command

remotehost:remotefile localfile
localfile remotehost:remotefile

The slogin command

* slogin [-C] remotehost
— logs you into ‘remotehost’ just like rlogin

— Also sets up tunneled X-windows server
connection

TCP port forwarding

A very powerful and useful feature!

Began as clever mechanism to handle
remote X windows applications

Became general-purpose TCP tunneling
feature; can tunnel connections in either
direction once a SSH session Is set up

Routinely used to websurf, fetch and send
mail with Eudora, etc

Remote X windows

* \WWhen you log into a remote host
conventionally, you set the $DISPLAY
variable so that remote X applications can
connect back to your local X display, e.g.
set DISPLAY =myworkstation:0

* Problems with security and firewalls:

— firewall may block the inbound connection

— others may connect to your X server and do
nasty things

SSH X forwarding

 With ssh/slogin, the remote sshd posts a
Isten on local TCP port 6000+n and sets
DISPLAY=:n.0

 Remote X applications connect to what they
think Is a secondary local X display

o SSH intercepts and forwards over the
encrypted TCP channel to the local X

display

SSH forwarding advantages

* No Iinbound connections need be allowed by
firewall

* Everything istransparently encrypted in
transit over the existing outbound TCP
connection

e Firewalls only need permit outbound TCP
connections to port 22 (ssh)

General Purpose TCP
Forwarding

e ssh -L1234:remotehost:5678 serverhost
— Local ssh client listens to port 1234

— Connections to local port 1234 are
automatically patched to connections from
serverhost to TCP port 5678 on remotehost

» ssh -R1234:remotehost:5678 serverhost
— Ssh on serverhost listens to port 1234

— Connections are forwarded to port 5678 on
remotehost

SSH Local Tunneling

encrypted

1234

client$ ssh -L1234:remote:5678 server
random$ telnet client 1234

SSH Remote Tunneling

encrypted .
< clear
5678
cI ear

client$ ssh -R1234:remote:5678 server
random$ telnet server 1234

Example: Secure Websurfing

e ssh -L.3128:0ceana.nlanr.net:3128
oceana.nlanr.net

« Configure netscapeto use 127.0.0.1:3128 as
http/ftp proxy

 HTTP requests are transparently tunneled
across the encrypted SSH session to web
proxy on oceana.nlanr.net

Example: Secure Emall

e ssh-C-L110:popserver:110
-L25:smtpserver:25 sshserver
* A local client (e.g., Eudora) may now

connect to ports 110 and 25 on ssh client
system to fetch and send mall

 Mail will be compressed and encrypted over
the SSH connection to sshserver

— but will bein clear on both ends

Inside SSH

e Session encrypted with IDEA, 3DES,
Blowfish, Arcfour, DES (deprecated)

» Session key generated by client, doubly
encrypted with RSA and sent to server

 Two RSA keys.
— “host key” - fixed 1024 bit RSA key

— “server key” - 768 bit RSA key, changes every
hour

Why two RSA keys?

The static host key authenticates the server
to the client, which caches these public keys

When the server key is changed, the old key
Is deliberately destroyed

This prevents recorded traffic from being
decrypted even If all long-term secret keys
are subsequently seized

Thisis perfect forward secrecy

What about the host key?

e On thefirst connection to a ssh server, the
client fetches the server’ s host key and adds
It to alocal list, unverified

e Thisraisesthe possibility of a man-in-the-
middle masguerading as the server

 If thisisaconcern, you can pre-load your

host key database, or distribute it signed
with PGP, etc

User Authentication

o User passwords, typed down the encrypted
channel

— can be disabled for increased security

 RSA challenge/response with a personal
user key

— secret key kept encrypted on client machine
 Various other options, including Kerberos

User Authentication Agent

 Rather than type a password or pass phrase
for every connection, SSH provides an
optional authentication agent that can
automatically answer RSA challenges

* Clientstalk to agent in two ways.

— shared UNIX file descriptor inherited by child
Processes

— UNIX domain sockets in protected directory

Using the authentication agent

ssh-agent bash

ssh-agent startx
— for X windows users

ssh-add

— prompts for passphrase, adds to agent
ssh-add -d

— destroys previoudly entered passphrase

Config filesin ~/.ssh

i dentity

o user’'sprivate RSA key, encrypted with passphrase
Identity.pub

 user’spublic RSA key
known hosts

e |ist of known host public keys

authorized keys
e list of public keys that can authenticate this user

To learn more

 Read the documentation!

e SSH has many configuration options and
optional features; fortunately, the defaults
are pretty reasonable

