
Installing and Using SSH on
Linux

Phil Karn

karn@ka9q.ampr.org

Secure Shell - SSH

• Originally designed and written by Tatu
Ylonen (ylo@ssh.fi) as a secure, drop-in
replacement for the BSD UNIX
rsh/rlogin/rcp suite

• Provides automatic, strong, cryptographic
authentication and confidentiality

• Remarkably easy to install and use
– now almost universal on UNIX servers

Where to get SSH

• ftp://ftp.cs.hut.fi/pub/ssh
– two protocol versions, 1.2 and 2.0

– 2.0 has more restrictive licensing provisions

– Most people still use 1.2 - released under GPL

• http://www.cryptography.org/cgi-
bin/crypto.cgi/ssh/
– my version of 1.2.26 with fast x86 DES code

– export-controlled site (must be US citizen or
permanent resident)

Installing SSH

• # tar xzvf ssh-1.2.26.tar.gz

• # cd ssh-1.2.26

• # ./configure

• # make install

• That’s it!
– you might have to edit a boot script to start sshd

Using SSH: the ssh command

• ssh [-C] remotehost command
– executes ‘command’ on host ‘remotehost’, with

standard input, output and error to the local
pipeline

– will prompt for password or passphrase unless
the authentication agent is in use

– -C option enables compression; advised on
most paths beyond a fast local LAN

The scp command

• scp [-C] remotehost:remotefile localfile

• scp [-C] localfile remotehost:remotefile

The slogin command

• slogin [-C] remotehost
– logs you into ‘remotehost’ just like rlogin

– Also sets up tunneled X-windows server
connection

TCP port forwarding

• A very powerful and useful feature!

• Began as clever mechanism to handle
remote X windows applications

• Became general-purpose TCP tunneling
feature; can tunnel connections in either
direction once a SSH session is set up

• Routinely used to websurf, fetch and send
mail with Eudora, etc

Remote X windows

• When you log into a remote host
conventionally, you set the $DISPLAY
variable so that remote X applications can
connect back to your local X display, e.g.
set DISPLAY=myworkstation:0

• Problems with security and firewalls:
– firewall may block the inbound connection

– others may connect to your X server and do
nasty things

SSH X forwarding

• With ssh/slogin, the remote sshd posts a
listen on local TCP port 6000+n and sets
DISPLAY=:n.0

• Remote X applications connect to what they
think is a secondary local X display

• SSH intercepts and forwards over the
encrypted TCP channel to the local X
display

SSH forwarding advantages

• No inbound connections need be allowed by
firewall

• Everything is transparently encrypted in
transit over the existing outbound TCP
connection

• Firewalls only need permit outbound TCP
connections to port 22 (ssh)

General Purpose TCP
Forwarding

• ssh -L1234:remotehost:5678 serverhost
– Local ssh client listens to port 1234

– Connections to local port 1234 are
automatically patched to connections from
serverhost to TCP port 5678 on remotehost

• ssh -R1234:remotehost:5678 serverhost
– Ssh on serverhost listens to port 1234

– Connections are forwarded to port 5678 on
remotehost

SSH Local Tunneling

SSH

SSHD

client$ ssh -L1234:remote:5678 server
random$ telnet client 1234

remote

server

22

1234

5678

encrypted

clear clear

client

 random

SSH Remote Tunneling

SSHD

client$ ssh -R1234:remote:5678 server
random$ telnet server 1234

server

1234

encrypted

22
SSH

client

remote
clear

5678
clear

random

Example: Secure Websurfing

• ssh -L3128:oceana.nlanr.net:3128
oceana.nlanr.net

• Configure netscape to use 127.0.0.1:3128 as
http/ftp proxy

• HTTP requests are transparently tunneled
across the encrypted SSH session to web
proxy on oceana.nlanr.net

Example: Secure Email

• ssh -C -L110:popserver:110
-L25:smtpserver:25 sshserver

• A local client (e.g., Eudora) may now
connect to ports 110 and 25 on ssh client
system to fetch and send mail

• Mail will be compressed and encrypted over
the SSH connection to sshserver
– but will be in clear on both ends

Inside SSH

• Session encrypted with IDEA, 3DES,
Blowfish, Arcfour, DES (deprecated)

• Session key generated by client, doubly
encrypted with RSA and sent to server

• Two RSA keys:
– “host key” - fixed 1024 bit RSA key

– “server key” - 768 bit RSA key, changes every
hour

Why two RSA keys?

• The static host key authenticates the server
to the client, which caches these public keys

• When the server key is changed, the old key
is deliberately destroyed

• This prevents recorded traffic from being
decrypted even if all long-term secret keys
are subsequently seized

• This is perfect forward secrecy

What about the host key?

• On the first connection to a ssh server, the
client fetches the server’s host key and adds
it to a local list, unverified

• This raises the possibility of a man-in-the-
middle masquerading as the server

• If this is a concern, you can pre-load your
host key database, or distribute it signed
with PGP, etc

User Authentication

• User passwords, typed down the encrypted
channel
– can be disabled for increased security

• RSA challenge/response with a personal
user key
– secret key kept encrypted on client machine

• Various other options, including Kerberos

User Authentication Agent

• Rather than type a password or pass phrase
for every connection, SSH provides an
optional authentication agent that can
automatically answer RSA challenges

• Clients talk to agent in two ways:
– shared UNIX file descriptor inherited by child

processes

– UNIX domain sockets in protected directory

Using the authentication agent

• ssh-agent bash

• ssh-agent startx
– for X windows users

• ssh-add
– prompts for passphrase, adds to agent

• ssh-add -d
– destroys previously entered passphrase

Config files in ~/.ssh

• identity
• user’s private RSA key, encrypted with passphrase

• identity.pub
• user’s public RSA key

• known_hosts
• list of known host public keys

• authorized_keys
• list of public keys that can authenticate this user

To learn more

• Read the documentation!

• SSH has many configuration options and
optional features; fortunately, the defaults
are pretty reasonable

