Coding and Modulation for the QRPP EME Channel

Phil Karn, KA9Q karn@qualcomm.com

EME Channel Characteristics

- Extremely high path loss
- Extra bandwidth plentiful
 - classic power-limited channel
- Rayleigh fading
 - very similar to land mobile channel without direct path
- Typical coherence times of seconds on 2m
 - decreases approximately as 1/≰
- Typical coherence bandwidth of 500-1000Hz
 - relatively independent of frequency

Stuff That Probably Won't Work

- Coherent, suppressed carrier BPSK & QPSK, with or without FEC
 - Carrier phase stability requirements are extreme at low data rates; coherence time of channel is much too short
- Noncoherent BFSK without FEC
 - E_b/N₀ requirements too high
- Ordinary CW
 - signals aren't even audible!

Binary Costas Loop

Binary Costas Loop

Stuff That Might Work

- Coherent, residual carrier BPSK with strong FEC
 - Long-time standard with NASA deep space probes
- BFSK with strong FEC
- Differentially detected BPSK with strong FEC
 - better than BFSK

BPSK

Carrier suppressed, must be regenerated nonlinearly

Differential BPSK Demod

What Definitely Will Work

- Noncoherently demodulated M-ary orthogonal FSK (MFSK) with strong FEC and interleaving
 - extension of ordinary 2-tone FSK to many more tones, usually a power of 2
- Technology is actually quite old, but impractical for amateurs until modern PCs
 - British Foreign Office "Piccolo" system was 32-ary FSK
 - Coded 8-ary FSK common in military anti-jam FH radio
 - Qualcomm CDMA cellular system uses 64-ary Walsh spread spectrum variant for mobile-to-cell (reverse) link

Why M-ary FSK?

- Increasing M decreases E_b/N₀ requirements at the expense of extra bandwidth
- Each "tone" carries log₂M bits, so we can "invest" that much more energy in each tone
 - still no need for a phase reference between symbols
- Improvement is rapid at first -- 8-ary FSK is actually better than perfect coherent BPSK at 10⁻⁵ BER -- but it eventually slows down
 - reaches Shannon limit of -1.6dB at M=infinity

Probability of a bit error for noncoherent detection of orthogonal signals.

Noncoherent 4-ary FSK Demod

may be done with FFT sin LO cos choose 2-bit largest output (repeated 3 more times)

Modem Block Diagram

Receive

Receive

16-ary Tone Spacing

min total bandwidth = M/T = r*M/log₂(M); r = data rate

Coding with MFSK

- Forward error correction coding (FEC) can further improve MFSK performance
- Unlike ideal coherent PSK, there is an optimum "code rate" (redundancy ratio) for each value of M due to demodulator thresholding
- For a non-fading channel this is about rate 1/2 for a very wide range of M
 - for M=64, E_b/N_0 =3.5 dB is possible
- For a Rayleigh fading channel, this is about rate 1/10 for M=64
 - Needed E_b/N₀ is about 6.5 dB

Noncoherent Thresholding

Minimum E_b/N_0 versus rate, M orthogonal signals, noncoherent detection AWGN.

Minimum E_b/N_0 versus rate, M orthogonal signals, noncoherent detection AWGN.

Minimum energy loci versus rate, Rayleigh channel, M-ary orthogonal signals, noncoherent detection.

Interleaving

- Interleaving simply rearranges the order in which code symbols are transmitted
 - scatters error bursts into "random" single errors

Convolutional Coding

- One of the most powerful FEC techniques
- Two major decoding methods:
 - Viterbi (maximum likelihood)
 - Fano (sequential)
- Each has its place
- Decoding is relatively CPU-intensive, but is now easy on modern PCs
 - K=7 r=1/2 Viterbi @ 155 kb/s on Pentium 90
 - K=32 r=1/2 Fano @ 200-400 kb/s (slower near threshold)
- Suggest Viterbi for EME
 - Can use larger K
 - Use "tail biting" to remove usual tail overhead

Design of Oscar-Class 70cm EME Link

- RF Output Power = 150W (+21.76 dBW)
- TX Antenna Gain = +19.1 dBi
- Path Loss (average) = 261.2 dB
- RX Antenna Gain = +19.1 dBi
- RX Power = -201.24 dBW
- System T = 100K (-208.6 dBW/Hz)
- RX $C/N_0 = +7.36 \text{ dB-Hz}$
 - far too weak to hear!

Link Design, cont

- $C/N_0 = +7.36 \text{ dB-Hz}$
- Assume $E_b/N_0 = 7dB$
- Data Rate = +0.36 dB-bps ~= 1bps
- Choose FEC rate r=1/10 -> 10 code sym/sec
- Choose M=64:
 - 6 bits/"tone"
 - symbol duration = 6/10 = 600 millisec

Comments

- M=64 is not necessarily optimal, but should work
 - Not a lot of literature on very large M
- Symbol time is less than coherence time
 - but we're close; this is our most serious limitation
- Symbol time long enough for delay spread to not be a factor
 - If it was, we could chirp or frequency hop
- Symbol time long enough for easy symbol synch with GPS and computer moon tracking

Scaling to Higher Speeds

- "Full scale" EME stations should support ~300bps with these techniques
- M=64 implies ~64KHz RF bandwidth, with ISI due to delay spread on short symbols
- Could go to M > 64 to lengthen symbol and further reduce E_b/N₀, but would need even more bandwidth
- Some form of spread spectrum seems essential to maximizing potential of large EME stations

Scaling to Lower Speeds

- Coherence time a serious barrier
- Could keep M=64 and lower the FEC code rate to give a supportable user data rate
- This FEC rate would be well below the optimum for a Rayleigh fading channel, implying a significant noncoherent combining loss and greater E_b/N₀, hence an even lower data rate
- We'd definitely try the operators' patience!